ON EXTREMAL PROBLEMS IN TUBULAR DOMAINS OVER SYMMETRIC CONES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Continuation Method for Nonlinear Complementarity Problems over Symmetric Cones

In this paper, we introduce a new P -type condition for nonlinear functions defined over Euclidean Jordan algebras, and study a continuation method for nonlinear complementarity problems over symmetric cones. This new P -type condition represents a new class of nonmonotone nonlinear complementarity problems that can be solved numerically.

متن کامل

Uniform nonsingularity and complementarity problems over symmetric cones

Abstract. We study the uniform nonsingularity property recently proposed by the authors and present its applications to nonlinear complementarity problems over a symmetric cone. In particular, by addressing theoretical issues such as the existence of Newton directions, the boundedness of iterates and the nonsingularity of B-subdifferentials, we show that the non-interior continuation method pro...

متن کامل

A Note on Sparse SOS and SDP Realxations for Polynomial Optimization Problems over Symmetric Cones

This short note extends the sparse SOS (sum of squares) and SDP (semidefinite programming) relaxation proposed by Waki, Kim, Kojima and Muramatsu for normal POPs (polynomial optimization problems) to POPs over symmetric cones, and establishes its theoretical convergence based on the recent convergence result by Lasserre on the sparse SOS and SDP relaxation for normal POPs. A numerical example i...

متن کامل

Analytic Besov spaces and Hardy-type inequalities in tube domains over symmetric cones

We give various equivalent formulations to the (partially) open problem about Lboundedness of Bergman projections in tubes over cones. Namely, we show that such boundedness is equivalent to the duality identity between Bergman spaces, A ′ = (Ap)∗, and also to a Hardy type inequality related to the wave operator. We introduce analytic Besov spaces in tubes over cones, for which such Hardy inequa...

متن کامل

A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones

This short note extends the sparse SOS (sum of squares) and SDP (semidefinite programming) relaxation proposed by Waki, Kim, Kojima and Muramatsu for normal POPs (polynomial optimization problems) to POPs over symmetric cones, and establishes its theoretical convergence based on the recent convergence result by Lasserre on the sparse SOS and SDP relaxation for normal POPs. A numerical example i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Issues of Analysis

سال: 2014

ISSN: 2306-3432

DOI: 10.15393/j3.art.2014.2261